metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.13D14, (C2×C28)⋊21D4, C14.65(C4×D4), (C2×Dic7)⋊10D4, C23.18(C4×D7), C2.1(C28⋊D4), (C22×C4).32D14, C22.102(D4×D7), C2.7(D14⋊D4), C14.85(C4⋊D4), C14.12(C4⋊1D4), Dic7⋊1(C22⋊C4), C2.3(Dic7⋊D4), C14.34(C4.4D4), C22.54(C4○D28), (C23×C14).40C22, (C22×C28).25C22, C7⋊2(C24.3C22), (C23×D7).13C22, C23.284(C22×D7), C2.28(Dic7⋊4D4), C22.49(D4⋊2D7), (C22×C14).331C23, C2.7(Dic7.D4), (C22×Dic7).44C22, (C2×C7⋊D4)⋊5C4, (C2×D14⋊C4)⋊5C2, (C2×C4)⋊9(C7⋊D4), (C2×C22⋊C4)⋊4D7, (C2×C4×Dic7)⋊24C2, C2.10(C4×C7⋊D4), (C2×C23.D7)⋊4C2, C2.30(D7×C22⋊C4), C22.128(C2×C4×D7), (C14×C22⋊C4)⋊23C2, (C2×Dic7⋊C4)⋊11C2, (C2×C14).323(C2×D4), C14.29(C2×C22⋊C4), (C22×C7⋊D4).3C2, C22.52(C2×C7⋊D4), (C22×C14).54(C2×C4), (C2×Dic7).60(C2×C4), (C22×D7).20(C2×C4), (C2×C14).146(C4○D4), (C2×C14).110(C22×C4), SmallGroup(448,491)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.13D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=b, f2=db=bd, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de13 >
Subgroups: 1300 in 258 conjugacy classes, 77 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, Dic7, C28, D14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C24.3C22, C4×Dic7, Dic7⋊C4, D14⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, C23×D7, C23×C14, C2×C4×Dic7, C2×Dic7⋊C4, C2×D14⋊C4, C2×C23.D7, C14×C22⋊C4, C22×C7⋊D4, C24.13D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, D14, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4×D7, C7⋊D4, C22×D7, C24.3C22, C2×C4×D7, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, D7×C22⋊C4, Dic7⋊4D4, D14⋊D4, Dic7.D4, C4×C7⋊D4, Dic7⋊D4, C28⋊D4, C24.13D14
(1 154)(2 45)(3 156)(4 47)(5 158)(6 49)(7 160)(8 51)(9 162)(10 53)(11 164)(12 55)(13 166)(14 29)(15 168)(16 31)(17 142)(18 33)(19 144)(20 35)(21 146)(22 37)(23 148)(24 39)(25 150)(26 41)(27 152)(28 43)(30 107)(32 109)(34 111)(36 85)(38 87)(40 89)(42 91)(44 93)(46 95)(48 97)(50 99)(52 101)(54 103)(56 105)(57 117)(58 186)(59 119)(60 188)(61 121)(62 190)(63 123)(64 192)(65 125)(66 194)(67 127)(68 196)(69 129)(70 170)(71 131)(72 172)(73 133)(74 174)(75 135)(76 176)(77 137)(78 178)(79 139)(80 180)(81 113)(82 182)(83 115)(84 184)(86 147)(88 149)(90 151)(92 153)(94 155)(96 157)(98 159)(100 161)(102 163)(104 165)(106 167)(108 141)(110 143)(112 145)(114 202)(116 204)(118 206)(120 208)(122 210)(124 212)(126 214)(128 216)(130 218)(132 220)(134 222)(136 224)(138 198)(140 200)(169 217)(171 219)(173 221)(175 223)(177 197)(179 199)(181 201)(183 203)(185 205)(187 207)(189 209)(191 211)(193 213)(195 215)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 184)(2 185)(3 186)(4 187)(5 188)(6 189)(7 190)(8 191)(9 192)(10 193)(11 194)(12 195)(13 196)(14 169)(15 170)(16 171)(17 172)(18 173)(19 174)(20 175)(21 176)(22 177)(23 178)(24 179)(25 180)(26 181)(27 182)(28 183)(29 217)(30 218)(31 219)(32 220)(33 221)(34 222)(35 223)(36 224)(37 197)(38 198)(39 199)(40 200)(41 201)(42 202)(43 203)(44 204)(45 205)(46 206)(47 207)(48 208)(49 209)(50 210)(51 211)(52 212)(53 213)(54 214)(55 215)(56 216)(57 155)(58 156)(59 157)(60 158)(61 159)(62 160)(63 161)(64 162)(65 163)(66 164)(67 165)(68 166)(69 167)(70 168)(71 141)(72 142)(73 143)(74 144)(75 145)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 136)(86 137)(87 138)(88 139)(89 140)(90 113)(91 114)(92 115)(93 116)(94 117)(95 118)(96 119)(97 120)(98 121)(99 122)(100 123)(101 124)(102 125)(103 126)(104 127)(105 128)(106 129)(107 130)(108 131)(109 132)(110 133)(111 134)(112 135)
(1 93)(2 94)(3 95)(4 96)(5 97)(6 98)(7 99)(8 100)(9 101)(10 102)(11 103)(12 104)(13 105)(14 106)(15 107)(16 108)(17 109)(18 110)(19 111)(20 112)(21 85)(22 86)(23 87)(24 88)(25 89)(26 90)(27 91)(28 92)(29 167)(30 168)(31 141)(32 142)(33 143)(34 144)(35 145)(36 146)(37 147)(38 148)(39 149)(40 150)(41 151)(42 152)(43 153)(44 154)(45 155)(46 156)(47 157)(48 158)(49 159)(50 160)(51 161)(52 162)(53 163)(54 164)(55 165)(56 166)(57 205)(58 206)(59 207)(60 208)(61 209)(62 210)(63 211)(64 212)(65 213)(66 214)(67 215)(68 216)(69 217)(70 218)(71 219)(72 220)(73 221)(74 222)(75 223)(76 224)(77 197)(78 198)(79 199)(80 200)(81 201)(82 202)(83 203)(84 204)(113 181)(114 182)(115 183)(116 184)(117 185)(118 186)(119 187)(120 188)(121 189)(122 190)(123 191)(124 192)(125 193)(126 194)(127 195)(128 196)(129 169)(130 170)(131 171)(132 172)(133 173)(134 174)(135 175)(136 176)(137 177)(138 178)(139 179)(140 180)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 28 107 106)(2 105 108 27)(3 26 109 104)(4 103 110 25)(5 24 111 102)(6 101 112 23)(7 22 85 100)(8 99 86 21)(9 20 87 98)(10 97 88 19)(11 18 89 96)(12 95 90 17)(13 16 91 94)(14 93 92 15)(29 84 153 218)(30 217 154 83)(31 82 155 216)(32 215 156 81)(33 80 157 214)(34 213 158 79)(35 78 159 212)(36 211 160 77)(37 76 161 210)(38 209 162 75)(39 74 163 208)(40 207 164 73)(41 72 165 206)(42 205 166 71)(43 70 167 204)(44 203 168 69)(45 68 141 202)(46 201 142 67)(47 66 143 200)(48 199 144 65)(49 64 145 198)(50 197 146 63)(51 62 147 224)(52 223 148 61)(53 60 149 222)(54 221 150 59)(55 58 151 220)(56 219 152 57)(113 172 195 118)(114 117 196 171)(115 170 169 116)(119 194 173 140)(120 139 174 193)(121 192 175 138)(122 137 176 191)(123 190 177 136)(124 135 178 189)(125 188 179 134)(126 133 180 187)(127 186 181 132)(128 131 182 185)(129 184 183 130)
G:=sub<Sym(224)| (1,154)(2,45)(3,156)(4,47)(5,158)(6,49)(7,160)(8,51)(9,162)(10,53)(11,164)(12,55)(13,166)(14,29)(15,168)(16,31)(17,142)(18,33)(19,144)(20,35)(21,146)(22,37)(23,148)(24,39)(25,150)(26,41)(27,152)(28,43)(30,107)(32,109)(34,111)(36,85)(38,87)(40,89)(42,91)(44,93)(46,95)(48,97)(50,99)(52,101)(54,103)(56,105)(57,117)(58,186)(59,119)(60,188)(61,121)(62,190)(63,123)(64,192)(65,125)(66,194)(67,127)(68,196)(69,129)(70,170)(71,131)(72,172)(73,133)(74,174)(75,135)(76,176)(77,137)(78,178)(79,139)(80,180)(81,113)(82,182)(83,115)(84,184)(86,147)(88,149)(90,151)(92,153)(94,155)(96,157)(98,159)(100,161)(102,163)(104,165)(106,167)(108,141)(110,143)(112,145)(114,202)(116,204)(118,206)(120,208)(122,210)(124,212)(126,214)(128,216)(130,218)(132,220)(134,222)(136,224)(138,198)(140,200)(169,217)(171,219)(173,221)(175,223)(177,197)(179,199)(181,201)(183,203)(185,205)(187,207)(189,209)(191,211)(193,213)(195,215), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,184)(2,185)(3,186)(4,187)(5,188)(6,189)(7,190)(8,191)(9,192)(10,193)(11,194)(12,195)(13,196)(14,169)(15,170)(16,171)(17,172)(18,173)(19,174)(20,175)(21,176)(22,177)(23,178)(24,179)(25,180)(26,181)(27,182)(28,183)(29,217)(30,218)(31,219)(32,220)(33,221)(34,222)(35,223)(36,224)(37,197)(38,198)(39,199)(40,200)(41,201)(42,202)(43,203)(44,204)(45,205)(46,206)(47,207)(48,208)(49,209)(50,210)(51,211)(52,212)(53,213)(54,214)(55,215)(56,216)(57,155)(58,156)(59,157)(60,158)(61,159)(62,160)(63,161)(64,162)(65,163)(66,164)(67,165)(68,166)(69,167)(70,168)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,136)(86,137)(87,138)(88,139)(89,140)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,121)(99,122)(100,123)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135), (1,93)(2,94)(3,95)(4,96)(5,97)(6,98)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,167)(30,168)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,151)(42,152)(43,153)(44,154)(45,155)(46,156)(47,157)(48,158)(49,159)(50,160)(51,161)(52,162)(53,163)(54,164)(55,165)(56,166)(57,205)(58,206)(59,207)(60,208)(61,209)(62,210)(63,211)(64,212)(65,213)(66,214)(67,215)(68,216)(69,217)(70,218)(71,219)(72,220)(73,221)(74,222)(75,223)(76,224)(77,197)(78,198)(79,199)(80,200)(81,201)(82,202)(83,203)(84,204)(113,181)(114,182)(115,183)(116,184)(117,185)(118,186)(119,187)(120,188)(121,189)(122,190)(123,191)(124,192)(125,193)(126,194)(127,195)(128,196)(129,169)(130,170)(131,171)(132,172)(133,173)(134,174)(135,175)(136,176)(137,177)(138,178)(139,179)(140,180), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,28,107,106)(2,105,108,27)(3,26,109,104)(4,103,110,25)(5,24,111,102)(6,101,112,23)(7,22,85,100)(8,99,86,21)(9,20,87,98)(10,97,88,19)(11,18,89,96)(12,95,90,17)(13,16,91,94)(14,93,92,15)(29,84,153,218)(30,217,154,83)(31,82,155,216)(32,215,156,81)(33,80,157,214)(34,213,158,79)(35,78,159,212)(36,211,160,77)(37,76,161,210)(38,209,162,75)(39,74,163,208)(40,207,164,73)(41,72,165,206)(42,205,166,71)(43,70,167,204)(44,203,168,69)(45,68,141,202)(46,201,142,67)(47,66,143,200)(48,199,144,65)(49,64,145,198)(50,197,146,63)(51,62,147,224)(52,223,148,61)(53,60,149,222)(54,221,150,59)(55,58,151,220)(56,219,152,57)(113,172,195,118)(114,117,196,171)(115,170,169,116)(119,194,173,140)(120,139,174,193)(121,192,175,138)(122,137,176,191)(123,190,177,136)(124,135,178,189)(125,188,179,134)(126,133,180,187)(127,186,181,132)(128,131,182,185)(129,184,183,130)>;
G:=Group( (1,154)(2,45)(3,156)(4,47)(5,158)(6,49)(7,160)(8,51)(9,162)(10,53)(11,164)(12,55)(13,166)(14,29)(15,168)(16,31)(17,142)(18,33)(19,144)(20,35)(21,146)(22,37)(23,148)(24,39)(25,150)(26,41)(27,152)(28,43)(30,107)(32,109)(34,111)(36,85)(38,87)(40,89)(42,91)(44,93)(46,95)(48,97)(50,99)(52,101)(54,103)(56,105)(57,117)(58,186)(59,119)(60,188)(61,121)(62,190)(63,123)(64,192)(65,125)(66,194)(67,127)(68,196)(69,129)(70,170)(71,131)(72,172)(73,133)(74,174)(75,135)(76,176)(77,137)(78,178)(79,139)(80,180)(81,113)(82,182)(83,115)(84,184)(86,147)(88,149)(90,151)(92,153)(94,155)(96,157)(98,159)(100,161)(102,163)(104,165)(106,167)(108,141)(110,143)(112,145)(114,202)(116,204)(118,206)(120,208)(122,210)(124,212)(126,214)(128,216)(130,218)(132,220)(134,222)(136,224)(138,198)(140,200)(169,217)(171,219)(173,221)(175,223)(177,197)(179,199)(181,201)(183,203)(185,205)(187,207)(189,209)(191,211)(193,213)(195,215), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,184)(2,185)(3,186)(4,187)(5,188)(6,189)(7,190)(8,191)(9,192)(10,193)(11,194)(12,195)(13,196)(14,169)(15,170)(16,171)(17,172)(18,173)(19,174)(20,175)(21,176)(22,177)(23,178)(24,179)(25,180)(26,181)(27,182)(28,183)(29,217)(30,218)(31,219)(32,220)(33,221)(34,222)(35,223)(36,224)(37,197)(38,198)(39,199)(40,200)(41,201)(42,202)(43,203)(44,204)(45,205)(46,206)(47,207)(48,208)(49,209)(50,210)(51,211)(52,212)(53,213)(54,214)(55,215)(56,216)(57,155)(58,156)(59,157)(60,158)(61,159)(62,160)(63,161)(64,162)(65,163)(66,164)(67,165)(68,166)(69,167)(70,168)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,136)(86,137)(87,138)(88,139)(89,140)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,121)(99,122)(100,123)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135), (1,93)(2,94)(3,95)(4,96)(5,97)(6,98)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,167)(30,168)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,151)(42,152)(43,153)(44,154)(45,155)(46,156)(47,157)(48,158)(49,159)(50,160)(51,161)(52,162)(53,163)(54,164)(55,165)(56,166)(57,205)(58,206)(59,207)(60,208)(61,209)(62,210)(63,211)(64,212)(65,213)(66,214)(67,215)(68,216)(69,217)(70,218)(71,219)(72,220)(73,221)(74,222)(75,223)(76,224)(77,197)(78,198)(79,199)(80,200)(81,201)(82,202)(83,203)(84,204)(113,181)(114,182)(115,183)(116,184)(117,185)(118,186)(119,187)(120,188)(121,189)(122,190)(123,191)(124,192)(125,193)(126,194)(127,195)(128,196)(129,169)(130,170)(131,171)(132,172)(133,173)(134,174)(135,175)(136,176)(137,177)(138,178)(139,179)(140,180), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,28,107,106)(2,105,108,27)(3,26,109,104)(4,103,110,25)(5,24,111,102)(6,101,112,23)(7,22,85,100)(8,99,86,21)(9,20,87,98)(10,97,88,19)(11,18,89,96)(12,95,90,17)(13,16,91,94)(14,93,92,15)(29,84,153,218)(30,217,154,83)(31,82,155,216)(32,215,156,81)(33,80,157,214)(34,213,158,79)(35,78,159,212)(36,211,160,77)(37,76,161,210)(38,209,162,75)(39,74,163,208)(40,207,164,73)(41,72,165,206)(42,205,166,71)(43,70,167,204)(44,203,168,69)(45,68,141,202)(46,201,142,67)(47,66,143,200)(48,199,144,65)(49,64,145,198)(50,197,146,63)(51,62,147,224)(52,223,148,61)(53,60,149,222)(54,221,150,59)(55,58,151,220)(56,219,152,57)(113,172,195,118)(114,117,196,171)(115,170,169,116)(119,194,173,140)(120,139,174,193)(121,192,175,138)(122,137,176,191)(123,190,177,136)(124,135,178,189)(125,188,179,134)(126,133,180,187)(127,186,181,132)(128,131,182,185)(129,184,183,130) );
G=PermutationGroup([[(1,154),(2,45),(3,156),(4,47),(5,158),(6,49),(7,160),(8,51),(9,162),(10,53),(11,164),(12,55),(13,166),(14,29),(15,168),(16,31),(17,142),(18,33),(19,144),(20,35),(21,146),(22,37),(23,148),(24,39),(25,150),(26,41),(27,152),(28,43),(30,107),(32,109),(34,111),(36,85),(38,87),(40,89),(42,91),(44,93),(46,95),(48,97),(50,99),(52,101),(54,103),(56,105),(57,117),(58,186),(59,119),(60,188),(61,121),(62,190),(63,123),(64,192),(65,125),(66,194),(67,127),(68,196),(69,129),(70,170),(71,131),(72,172),(73,133),(74,174),(75,135),(76,176),(77,137),(78,178),(79,139),(80,180),(81,113),(82,182),(83,115),(84,184),(86,147),(88,149),(90,151),(92,153),(94,155),(96,157),(98,159),(100,161),(102,163),(104,165),(106,167),(108,141),(110,143),(112,145),(114,202),(116,204),(118,206),(120,208),(122,210),(124,212),(126,214),(128,216),(130,218),(132,220),(134,222),(136,224),(138,198),(140,200),(169,217),(171,219),(173,221),(175,223),(177,197),(179,199),(181,201),(183,203),(185,205),(187,207),(189,209),(191,211),(193,213),(195,215)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,184),(2,185),(3,186),(4,187),(5,188),(6,189),(7,190),(8,191),(9,192),(10,193),(11,194),(12,195),(13,196),(14,169),(15,170),(16,171),(17,172),(18,173),(19,174),(20,175),(21,176),(22,177),(23,178),(24,179),(25,180),(26,181),(27,182),(28,183),(29,217),(30,218),(31,219),(32,220),(33,221),(34,222),(35,223),(36,224),(37,197),(38,198),(39,199),(40,200),(41,201),(42,202),(43,203),(44,204),(45,205),(46,206),(47,207),(48,208),(49,209),(50,210),(51,211),(52,212),(53,213),(54,214),(55,215),(56,216),(57,155),(58,156),(59,157),(60,158),(61,159),(62,160),(63,161),(64,162),(65,163),(66,164),(67,165),(68,166),(69,167),(70,168),(71,141),(72,142),(73,143),(74,144),(75,145),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,136),(86,137),(87,138),(88,139),(89,140),(90,113),(91,114),(92,115),(93,116),(94,117),(95,118),(96,119),(97,120),(98,121),(99,122),(100,123),(101,124),(102,125),(103,126),(104,127),(105,128),(106,129),(107,130),(108,131),(109,132),(110,133),(111,134),(112,135)], [(1,93),(2,94),(3,95),(4,96),(5,97),(6,98),(7,99),(8,100),(9,101),(10,102),(11,103),(12,104),(13,105),(14,106),(15,107),(16,108),(17,109),(18,110),(19,111),(20,112),(21,85),(22,86),(23,87),(24,88),(25,89),(26,90),(27,91),(28,92),(29,167),(30,168),(31,141),(32,142),(33,143),(34,144),(35,145),(36,146),(37,147),(38,148),(39,149),(40,150),(41,151),(42,152),(43,153),(44,154),(45,155),(46,156),(47,157),(48,158),(49,159),(50,160),(51,161),(52,162),(53,163),(54,164),(55,165),(56,166),(57,205),(58,206),(59,207),(60,208),(61,209),(62,210),(63,211),(64,212),(65,213),(66,214),(67,215),(68,216),(69,217),(70,218),(71,219),(72,220),(73,221),(74,222),(75,223),(76,224),(77,197),(78,198),(79,199),(80,200),(81,201),(82,202),(83,203),(84,204),(113,181),(114,182),(115,183),(116,184),(117,185),(118,186),(119,187),(120,188),(121,189),(122,190),(123,191),(124,192),(125,193),(126,194),(127,195),(128,196),(129,169),(130,170),(131,171),(132,172),(133,173),(134,174),(135,175),(136,176),(137,177),(138,178),(139,179),(140,180)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,28,107,106),(2,105,108,27),(3,26,109,104),(4,103,110,25),(5,24,111,102),(6,101,112,23),(7,22,85,100),(8,99,86,21),(9,20,87,98),(10,97,88,19),(11,18,89,96),(12,95,90,17),(13,16,91,94),(14,93,92,15),(29,84,153,218),(30,217,154,83),(31,82,155,216),(32,215,156,81),(33,80,157,214),(34,213,158,79),(35,78,159,212),(36,211,160,77),(37,76,161,210),(38,209,162,75),(39,74,163,208),(40,207,164,73),(41,72,165,206),(42,205,166,71),(43,70,167,204),(44,203,168,69),(45,68,141,202),(46,201,142,67),(47,66,143,200),(48,199,144,65),(49,64,145,198),(50,197,146,63),(51,62,147,224),(52,223,148,61),(53,60,149,222),(54,221,150,59),(55,58,151,220),(56,219,152,57),(113,172,195,118),(114,117,196,171),(115,170,169,116),(119,194,173,140),(120,139,174,193),(121,192,175,138),(122,137,176,191),(123,190,177,136),(124,135,178,189),(125,188,179,134),(126,133,180,187),(127,186,181,132),(128,131,182,185),(129,184,183,130)]])
88 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 4O | 4P | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 28 | 28 | 2 | 2 | 2 | 2 | 4 | 4 | 14 | ··· | 14 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C4×D7 | C4○D28 | D4×D7 | D4⋊2D7 |
kernel | C24.13D14 | C2×C4×Dic7 | C2×Dic7⋊C4 | C2×D14⋊C4 | C2×C23.D7 | C14×C22⋊C4 | C22×C7⋊D4 | C2×C7⋊D4 | C2×Dic7 | C2×C28 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 8 | 6 | 2 | 3 | 4 | 6 | 3 | 12 | 12 | 12 | 9 | 3 |
Matrix representation of C24.13D14 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 27 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 26 | 1 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
4 | 4 | 0 | 0 | 0 | 0 |
25 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 8 |
0 | 0 | 0 | 0 | 0 | 12 |
25 | 25 | 0 | 0 | 0 | 0 |
26 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 17 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 8 |
0 | 0 | 0 | 0 | 22 | 12 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,27,1,0,0,0,0,0,0,28,26,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[4,25,0,0,0,0,4,3,0,0,0,0,0,0,17,0,0,0,0,0,0,17,0,0,0,0,0,0,17,0,0,0,0,0,8,12],[25,26,0,0,0,0,25,4,0,0,0,0,0,0,12,17,0,0,0,0,0,17,0,0,0,0,0,0,17,22,0,0,0,0,8,12] >;
C24.13D14 in GAP, Magma, Sage, TeX
C_2^4._{13}D_{14}
% in TeX
G:=Group("C2^4.13D14");
// GroupNames label
G:=SmallGroup(448,491);
// by ID
G=gap.SmallGroup(448,491);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,758,387,58,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=b,f^2=d*b=b*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^13>;
// generators/relations